Bull optimization algorithm based on genetic operators for continuous optimization problems

نویسنده

  • Oğuz FINDIK
چکیده

In this paper, the researcher proposes a new evolutionary optimization algorithm that depends on genetic operators such as crossover and mutation, referred to as the bull optimization algorithm (BOA). This new optimization algorithm is called the BOA because the best individual is used to produce offspring individuals. The selection algorithm used in the genetic algorithm (GA) is removed from the proposed algorithm. Instead of the selection algorithm, individuals initially produced attempt to achieve better individuals. In the proposed method, crossover operation is always performed by using the best individual. The mutation process is carried out by using individual positions. In other words, individuals are converged to the best individuals by using crossover operation, which aims to get the individual that is the better than the best individual in the mutation stage. The proposed algorithm is tested using 50 large continuous benchmark test functions with different characteristics. The results obtained from the proposed algorithm are compared with those of the GA, particle swarm optimization (PSO), differential evolution (DE), and the artificial bee colony (ABC) algorithm. The BOA, ABC, DE, PSO, and GA provided either optimum results or better results than other optimization algorithms in 42, 38, 34, 25s and 17 benchmark functions, respectively. According to the test results, the proposed BOA provided better results than the optimization algorithms that are most commonly used in solving continuous optimization problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STRUCTURAL OPTIMIZATION USING A MUTATION-BASED GENETIC ALGORITHM

The present study is an attempt to propose a mutation-based real-coded genetic algorithm (MBRCGA) for sizing and layout optimization of planar and spatial truss structures. The Gaussian mutation operator is used to create the reproduction operators. An adaptive tournament selection mechanism in combination with adaptive Gaussian mutation operators are proposed to achieve an effective search in ...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

Application of Genetic Algorithm in Kinetic Modeling and Reaction Mechanism Studies

This study is focused on the development of a systematic computational approach which implements Genetic Algorithm (GA) to find the optimal rigorous kinetic models.A general Kinetic model for hydrogenolysis of dibenzothiophene (DBT) based on Langmuir-Hinshelwood type has been obtained from open literature. This model consists of eight continuous parameters(e.g., Arrhenus  and Van't...

متن کامل

A FAST GA-BASED METHOD FOR SOLVING TRUSS OPTIMIZATION PROBLEMS

Due to the complex structural issues and increasing number of design variables, a rather fast optimization algorithm to lead to a global swift convergence history without multiple attempts may be of major concern. Genetic Algorithm (GA) includes random numerical technique that is inspired by nature and is used to solve optimization problems. In this study, a novel GA method based on self-a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015